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Abstract Markerless tracking for augmented reality

should not only be accurate but also fast enough to

provide a seamless synchronization between real and

virtual beings. Current reportedmethods showed that a

vision-based tracking is accurate but requires high

computational power. This paper proposes a real-time

hybrid-based method for tracking unknown environ-

ments in markerless augmented reality. The proposed

method provides collaboration of vision-based

approach with accelerometers and gyroscopes sensors

as camera pose predictor. To align the augmentation

relative to camera motion, the tracking method is done

by substituting feature-based camera estimation with

combination of inertial sensors with complementary

filter to provide more dynamic response. The proposed

method managed to track unknown environment with

faster processing time compared to available feature-

based approaches. Moreover, the proposed method

can sustain its estimation in a situation where feature-

based tracking loses its track. The collaboration of

sensor tracking managed to perform the task for about

22.97 FPS, up to five times faster than feature-based

tracking method used as comparison. Therefore, the

proposed method can be used to track unknown

environments without depending on amount of fea-

tures on scene, while requiring lower computational

cost.
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1 Introduction

Augmented Reality (AR) is a new domain to mimic

technology generated objects in real life. This tech-

nology superimpose virtual objects onto a scene of real

world captured by a video camera. Users could see

these objects with display devices such that real &

virtual objects have co-existance. Augmented reality

is capable of displaying information that could not

attined by listening nor watching. Hence, it extends

human senses and improve user performance of real-

world activities. Several researchers attempted to

imitate virtual and real world; accordingly in augu-

mented reality an interesting survey is conducted by

Zhou et al. [1]. In this survey, tracking methods are

one of the fundamental topics for AR system devel-

opment, and is the most popular sub-fields to be

explored. In this paper has five important aspects

required for a fast tracking method on augmented

reality, namely: (1) introduction, (2) Augmented

reality and markerless tracking, (3) Methodology, (4)

Experimental result and (5) conclusion. This paper

emphasizes the motivation and background of mark-

erless tracking and augmented reality. The rest of this

paper is organized as follows. In Sect. 2, we discuss

important issues augmented reality problem and

issues. Section 3, a detailed methodology are pre-

sented and discussed to explain how the research is

carried out. In Sect. 4 an experimental result is

obtainable and deliberated in detailways. Finally,

discussions and conclusions are drawn in Sect. 5.

2 Augmented Reality and Markerless Tracking

In recent years development of interaction between

humans and machines has been improved tremen-

dously. Inevitably, connection with digital entities

becomes an essential part of human regular activities.

As one of the connecting bridge in human–machine

interaction, Augmented Reality (AR) attempts to

blend real objects with virtually-generated beings

within a single dimension. Such virtual objects are

typically superimposed to desired place on a scene

captured by camera [2]. These real objects along with

the ‘‘augmented’’ one are displayed to the user, so that

it appears together seamlessly. Users can directly

manipulate virtual beings as if they are in the real

dimension. Examples of human–machine interaction

using AR are shown in Fig. 1. Thus, AR can provide

enhanced information that initially cannot be per-

ceived from the environment by regular human

senses.Tracking for Augmented Reality demands

much more accuracy than in its sibling Virtual Reality.

In VR, the whole world of the user is being replaced

with the artificial one [3]. If the user’s virtual hand

shifts a bit than it should be in the real world, the user

may not realize it because his perception is completely

overridden by the content provided by the virtual

environment.

However, this is not the case for Augmented

Reality. A small errors can be recognized easily,

because users can still see the real world where the

virtual objects is augmented into. An example of

correct tracking is shown in Fig. 1, where an AR

system shows information of NASCAR drivers infor-

mation (name, speed, position, number) according to

their respective car. When these cars move to

complete their race, the system will track the move-

ment, then the driver’s info balloon will follow in real-

time. If the tracking system fails, the balloon will not

follow the car and it will disrupt the user perception

easily.

Handy AR attempted to replace conventional

fiducial markers with user’s outstretched hand, by

using skin-color detection and contour extraction [4].

Area of user’s hand was detected and segmented by

comparing it with previously learned histogram of

hand’s skin colour. Then, hand’s boundary was

generated by calculating distance between centre blob

and the farthest point from the hand. Within this

boundary, the system narrowed its target to detect

user’s fingertips. This was done by implementing

Fig. 1 AR on professional car racing showing race informa-

tion. Image courtesy of NASCAR
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contour detection to generate ellipses surrounding

curvature of the fingertips’ contour. Each of the five

user’s fingertips can be indexed by detecting the

thumb as a point with farthest mean distance. This

model, along with calculated camera parameters is

applied to estimate the camera’s pose. According to

the results, the method is comparably in par with

marker-based tracking techniques in terms of accu-

racy, with average RMS error of 5.86 pixels. However,

fingertips detection could fail when hand is exposed to

large change of illumination, such as in outdoor

scenes. It also showed an error when the hand was

occluded by object with similar skin-color [5,6].

In this research, we are particularly interested in

planar, unknown environments, which can be com-

monly found in any place, e.g. walls, floors or

workspaces. When the scene is unknown, i.e. there is

no prior information to do the tracking (such as by

training system to detect particular markers or CAD

models on the scene), it is considered a very difficult

task. Therefore, researchers introduced a constrain for

tracking planar scenes only [7–9]. Some AR tracking

methods focus more on tracking planar, unknown

environments. It attempts to deduce the tracking

without initial knowledge of the scene and put the

information in some form of map. Commonly called

as SLAM, when new features were discovered, it

expands the map so the knowledge grows incremen-

tally. Neubert et al. [8] used SLAM to construct

models from the captured scene.

One way to achieve markerless Augmented Reality

is done by making the system to calculate the camera

pose based on what it observes on screen. The system

tries to detect any regions that have abundant infor-

mation about the scene as features. These features will

then be calculated and tracked in every frame, so that

the camera pose can be calculated continuously. These

kind of techniques are often called as feature-based

tracking, and it is widely used in more recent

Augmented Reality system [1, 10].

However, In order to achieve robust and optmi-

mum tracking performance, kinds of features tracked

needs to be specified. The chosen feature must be

robust to motion and environmental changes such as

illumination. It should also be easily detectable and

deduceable. Some features that has been used by

researchers are point features, edges and feature

descriptors [11].

Point features are sub-areas in the captured image

that can be seen clearly. Point feature’s position is

capable to be deduced correctly. Localization of point

features can also be obtained easily throughout

sequence of video frame and furthermore their corre-

spondences can be determined [12]. Thus, point

feature are reliable as target to track unpredictable mo-

tion. Another special features that can be extracted

from image sequences is corners, which are the special

point features lying in the crossing of edges. Because

of the uniqueness of these features, corners’ attributes

were used to determine matching quality of the

tracking [13, 14].

Often, tracking point featureswill be complemented

with another feature known as edges. Edges have been

widely used as initial stage in image processing and

also as main feature in many computer vision appli-

cations. They can be defined as areas corresponding

with discontinuations occuring in an image [15].

According to Lindeberg [16], in the process of image

formation, these discontinuities can be potentially

related to depth or orientation. A physical properties of

captured objects are strongly interrelated with appear-

ance of edges [16]. In the early days of edge detection

technique, an edge, characerized by sudden intensity

change can be detected by solving zero-crossing

changes of the convolution equation [17]:

r2G x; yð Þ � I x; yð Þ ð1Þ

where I is the image, G(x,y) is two dimensional

Gaussian kernel distribution, and is the Laplacian of

them. Edges are another choice for tracking because it

provides feature connectivity that does not owned by

normal point features. Furthermore, they are also

resistant to change in various lighting conditions and

aspect changes [12]. An example of tracking edges and

corners is shown in Fig. 2, where the system tracks

available corners and edges of the objects captured in a

scene. Harris detector and FAST [12] are famous

feature detection techniques used by researchers

around the world.

In Augmented Reality, most sensor type used are

position-measuring devices. For example, one can use

ultrasonics to measure distance by calculating travel-

ling time of ultrasonic waves emitted. Some kind of

sensors that have been used are GPS, wave sensors and

inertial sensors. A position reside in three-dimensional

(3-D) space can be described with its correspondence
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inside Cartesian coordinate system. This position is

determined by six values: three for linear coordinates

and three for orientation value, illustrated in Fig. 3.

Linear coordinates is the measure (in length) of

difference to move the object’s coordinate with

respect to the reference. On the other hand, orientation

is a measure (in degree) of rotation of the object with

respect to the reference. Frequently, the measurements

are called length, width, height for position, and pitch,

yaw, roll for orientation, usually utilized for ship

movement [18]. The orientation may be also called as

Tait-Bryan angles or Euler angles [19, 20 ].

Because AR tracking works in real-world space, the

reference coordinate used is the world coordinate

system. The sensor-installed device translates its

position according to this reference. The system

exploits these sensors to obtain the motion of the user

with respect to the reference centre of world coordi-

nate, as illustrated in Fig. 4. When these measure-

ments are obtained, the rendering module will draw

the objects accordingly. The sensors will do the

measurements continuously to update the change of

user’s viewing position.

In Augmented Reality, most sensor type used are

position-measuring devices. For example, one can use

ultrasonics to measure distance by calculating travel-

ling time of ultrasonic waves emitted. Some kind of

sensors that have been used are GPS, wave sensors and

inertial sensors.

3 Proposed Methodology

Markerless tracking is beneficial to fully integrate

virtual into real-world, thus enhancing realism of

Augmented Reality technology. Such method enables

a natural, robust feature-tracking technique, but there

are issues occurred when tracking minimum-feature

scene. The markerless tracking estimates the tracking

by firstly generating ‘‘feature map’’ containing the

features observed from scene in their respective

location. Accordingly when the system runs, it will

track any changes happened due to camera motion,

and estimate the new camera motion based on the

change and the feature map.

In the proposed method, the sensor-based estima-

tionis highlighted, as shown in Fig. 5. Feature-based

approach is chosen as a ground truth estimation so that

the method is capable to track any planar structure

Fig. 2 Tracked edges and corners from a scene captured by

camera [8]

Fig. 3 The position and orientation of object. The xyz system is

the reference fixed coordinate system, while XYZ are the

position and abc are the orientation. Image courtesy of

Wikimedia

Fig. 4 Example of sensor configuration. The sensor will

measure the position and orientation with respect to the world

coordinate [25, 26]
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available on the scene. The same map making

approach is used to generate the base of estimation,

and then sensor-based approach is used as a comple-

ment for feature tracking. Main part of this method is

to estimate the orientation of the camera according to

features that are detected by map creation process

(blue highlighted). The process will done continously

according to the motion of the camera.

This sensor will be used to complement the tracking

process done by the camera by giving extra informa-

tion to the system. Because camera pose consists of

3-DOF translation and 3-DOF rotation, accelerometer

and gyroscope can be used used as position tracker. In

this research, we will focus on estimating the orien-

tation component of the camera pose. These sensors

will be attached to the camera and used to measure

orientation value relative to the ground truth. The

workflow is shown in Fig. 6. In order for sensor to

deduct correct orientation of the camera, calibration

will be done as the first step. Calibration is done to

determine the origin of coordinate for the system, so

that each position value will be measured relative to

this center. In this research, the calibration point will

be determined as the position of the dominant plane

obtained in the map creation process in the previous

step. This position will be treated as ground truth and

any measurement will be done relative to it.

Here, the estimation of camera pose, particularly

the orientation will be done by digital accelerometers

and gyroscopes. The accelerometer provides measure-

ment of acceleration acting on itself. Hence, when

there is no external force act in the device, it will

measure acceleration due to earth’s gravity. By

determining gravity vectors, accelerometer can act as

2-DOF orientation measurement for pitch and roll

angle [21, 22]. For example the estimation of

inclination angle bZA with respect to earth’s horizontal

is formulated as [23, 24]:

ẐA ¼ yt � â�t
yt � â�t
�

�

�

�

ð2Þ

where yt is the accelerometer signal, and â�t is the

estimated acceleration signal without the effect of

gravity. Signal from a gyroscope’s direct output

measures the angular speedx. The angular orientation

itself can be approximated numerically by integrating

the signal over a time-span Dt:

hk ¼ hk�1 þ xk � Dt ð3Þ

Fig. 5 Overview of the

enhanced method

Fig. 6 Workflow for pose estimation by gyroscope
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where k represents the current time/iteration. Thus,

orientation of a device can be measured by two kinds

of such inertial sensor.

A complementary filter enables fusing of multiple

signals intended for the same measurement. It works

by taking the noisy measurements and complementing

their special characteristics into a single output signal.

A complementary signal works by taking two mea-

surements y1 ¼ xþ l1 and y2 ¼ xþ l2 of the mea-

sured x, where l1 and l2 is the high and low frequency

noise. The estimation of filter output X̂ðsÞ is deter-

mined in frequency domain as:

X̂ sð Þ ¼ F1ðsÞY1 þ F2ðsÞY2 ð4Þ

where Y1 and Y2 is signal from both measurement,

F1(s) and F2(s) are the associated low pass and high

pass filter with total gain of F1ðsÞ þ F2ðsÞ ¼ 1.

As stated previously, due to the nature of its

technology an accelerometer is not adequate for

dynamic measurement. While these can be handled

by replacing it with gyroscopes, it has drift error

caused by integration of the angular speed signal. In

short, in orientation measuring one can trust gyroscope

in dynamic short-term, while in long-term accelerom-

eters will become more dependable. In this paper, the

benefit of signals from both accelerometers and

gyroscopes will be combined by a specific method

called complementary filtering. The complementary

filtered output hc is obtained by filtering gyroscope

signal hg to the high-pass and orientation from

accelerometer ha so that Eq. 4 becomes:

hk;c ¼ f1 � hk;a þ f2 � hk�1;c þ xk;g � Dt
� �

ð5Þ

From Eq. (5), an estimation of the orientation based

on combination of accelerometer and gyroscope

measurement can be obtained. It is noted, however,

that the complementary filter cannot process the yaw

orientation, because accelerometers are unable to

measure such signal (due to no change in gravity

vector). Finally, orientation component of the camera

pose, represented by pitch a, yaw b and roll c, is
estimated as:

âk;c ¼ a0 þ F1 � ak;a þ F2 � ak�1;c þ _ak;g � Dt
� �� �

b̂k;c ¼ b0 þ bk�1;c þ _bk;g � Dt
ĉk;c ¼ c0 þ F1 � ck;a þ F2 � ck�1;c þ _ck;g � Dt

� �� �

ð6Þ

where origin a0; b0; c0ð Þ is the orientation of the feature
map’s dominant plane. These calculations are done for

each incoming signals so that the camera pose will be

updated dynamically. Finally, the values obtained

from sensors will be used to estimate the orientation of

the camera pose relative to the dominant plane. When

the camera moves in rotating manner, accelerometer

and gyroscope will estimate how far it deviates from

the original position, and then they are combined. In

other words, the position of camera is obtained from

both accelerometer and gyroscope measurement col-

laborated by the complementary filter. The resulting

orientation is regarded as the estimation of the camera

pose relative to the initial position.

In this Paper, a sensor-based pose estimation algo-

rithm is developed. The pose estimation is then

integrated to an existing mapping algorithms and then

combined to construct a hybird markerless tracking

method for augmented reality. The proposed algorithm

is shown by Fig. 7. The algorithm consists of two steps

of mapping and tracking that provides estimation of

camera orientation as tracking output. It starts by

creating a map based on features on scene, and then

tracking such map with the combined accelerometer

and gyroscope.

Algorithm for Fast Markerless Tracking 

1. Start 
2. Capture stereo pair from the scene 
3. Mapping 

a. Initialize map from stereo pair 
b. Bundle Adjustment 
c. Feature Estimation 
d. Obtain map’s dominant plane 

coordinate 
4. Map’s coordinate = Tracking 

coordinate origin 
5. Tracking 

a. Obtain accelerometer orientation 
value 

b. Obtain gyroscope orientation 
value 

c. Combine by complementary filter 
d. Camera pose = filtered 
orientation 

6. Render virtual objects 
7. Go back to 5 through system run 

8. End

Fig. 7 Algorithm of the proposed method
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4 Experimental Result

In this section, the inertial sensors output is analyzed

and discussed. This research, two kinds of sensors are

used: digital accelerometers and gyroscope. While

both of these may give inertial measurement, in

particular orientation (rotation). Hence, some con-

trolled experiments were conducted to show the output

of orientation given. In the following cases, both

accelerometers and gyroscopes will act as an orienta-

tion measurement device.

4.1 Sensors Output

The sensors is mounted on same rigid platform so that

it will move at the same displacement value. The

resulted output will be recorded for a fixed length of

iteration and the signal response will be analysed.

Firstly, the measurement is done individually. Then, a

complementary filter is introduced to the sensors so

that output from accelerometer and gyroscope is

combined together. This filtered output will then

analysed to be compared with the preceding one.

The experiment conducted is to measure the output

when the remote is standing still, i.e. there is no

movement acted on the device. Intuitively it can be said

that the ground truth measurement is be zero for all

time. Figure 8 shows the example result of angular

speed from calibrated gyroscope output measured for

about 18 s, with the measurement interval of 10 ms.

According to the result, the three orientation

component (pitch, yaw, roll) showed averagely zero

value along measurement time. It can be noticed,

however, that noise occurs on the measurement so that

the value oscillated. The first experiment showedmean

pitch, yaw, roll value of -0.8391, -0.9258,

-0.7046 deg/s respectively, and with the uncertainty

expressed as standard deviation value of 0.4529,

0.2931, 0.6909 deg/s, respectively.

In order to obtain the angular position (orientation) the

previous gyroscope output is numerically integrated once

over a time-step along the measurement time. Fig. 9

shown plotting result. According to the result, the four

experiments showed that the resulted orientation did not

stay still in the zero value, in fact drifts occur in the

measurement. Result showed that the pitch, yaw, roll

value drifts for-8.732�,-9.311�, and-7.257�, respec-
tively, after the system runs for 10 s. The drift came

larger when the system runs longer, reaching -62.33�,
-78.67�, and-53.34�, respectively, aftermore than 90 s

running. Thus, when the remote is standing still without

anymovement, themeasurement from gyrosensor yields

integrated angular position with drift.

The following result display the response output

from the accelerometers, shown by Fig. 10. The

gravity force measured by accelerometer yields an

estimation for pitch and roll angle. However,

accelerometers are unable to measure yaw due to no

change of gravity happened in the yaw angle. Here it

can be seen that either pitch or the roll angle stays on

relatively stable output. In some point of measure-

ment, there are variances occurred in form of spikes.
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In this experiment, the mean of orientation mea-

surement for pitch and roll is -2.497� and -4.823�
with deviation of 0.635� and 0.241�, respectively.

The result also showed that the accelerometers

estimation yielded an offset to the measurement,

hence, the measurement will be corrected with the

average value. Figure 11 shows the corrected value of

such measurement, resulting in mean value for pitch

and roll of 0.361� and 0.031�, respectively. According
to these result, measurement from accelerometer is

more stable without drift as was happened in the

gyroscope.

In the Fig. 12, a complementary filter is used to

estimate orientation from both accelerometers and

gyroscopes. According to the result, the pitch and roll

value resulted in a more steady manner, as compared

to its preceding sensor output. It can be seen that the

complementary filter eliminates accelerometer’s spike

and gyroscope’s error drift so that the output become

near to the estimated truth. In this experiment, the filter

constant value used was 0.75 s, resulted in mean

orientation output for pitch and roll of -0.603� and

-0.503� with deviation of 0.1� and 0.187�,
respectively.

According to these result, it can be deduced that

usage of complementary filter can correct some errors

from both the accelerometers and gyroscope. When

the system is near to static, the complementary filter

will pass the accelerometer value, and conversely the

gyroscope signal will be passed when the system shifts

to more dynamic behavior, i.e. camera is moving.

Next, some experiment to measure the performance of

the system are conducted and analyzed.

4.2 Orientation

As described in the literature review, tracking in

Augmented Reality means to estimate the position and

movement of camera according to the observation on

the scene, while the system run iteratively. In the next

experiment, an analysis will be done to the result of

tracking itself, which is the orientation of the camera

(camera pose). The resulted orientation, which is the

combination of estimation from accelerometer and

gyroscope will be evaluated. Also, the capability of

proposed method to aid feature-based tracking method

when it fails in tracking the scene will be analyzed.

In this experiment, some scenes were used for

evaluation is shown in Fig. 13. For each of these

environment, orientation measurement were con-

ducted. The measurement is done for each succession

of iteration, i.e. time will be measured when the

tracking runs recurrently.

Furthermore,variety of scenes were used for eval-

uation is shown in Fig. 14. For each of these
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0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5

10

Time(s)

A
ng

ul
ar

 O
rie

nt
at

io
n 

(d
eg

)

Orientation Estimation from Accelerometer (Corrected)

Pitch
Roll

Fig. 11 Orientation result after correction from average value

0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5

10

Time(s)

A
ng

ul
ar

 O
rie

nt
at

io
n 

(d
eg

) Complemented Angle
Gyroscope
Estim From Accel
Filtered Pitch

0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5

10

Time(s)

A
ng

ul
ar

 O
rie

nt
at

io
n 

(d
eg

) Complemented Angle

Fig. 12 Orientation yielded from sensors and from filtering

process

 41 Page 8 of 11 3D Res  (2015) 6:41 

123



environment, orientation measurement were con-

ducted. The measurement is done for each succession

of iteration, i.e. time will be measured when the

tracking runs recurrently. To evaluate such issues, a

comparison for the proposed method is made. PTAM,

as the base method used to develop the proposed

method, will be used again as the benchmark. Both

method will be run altogether in the same time. Each

iteration, the system will estimate both PTAM and our

method estimation, resulting in two different estima-

tions ofmeasurements. The result is then compared and

analyzed to look at behaviour of the proposed method.

The example scenario of measuring orientation is

by moving the camera so that the orientation estima-

tion changes, as illustrated in Fig. 14.

Figure 15 shows orientations obtained from a

measurement, which is done for 300 iterations. The

measurement is done at the same time. As can be seen

from the graph, the proposed method follows the

estimation of PTAM. When the camera pose is

changed by means of rotating, the orientation changes

and this yields a change in the output. As was shown

by the figure, The proposed method managed to

measure the same behavior with PTAM. It is notable,

however, that the errors occurred in the measurement,

as can be seen starting from about 120th iteration

where the pitch and yaw signal drifts from PTAMFig. 13 Scenes used for measuring processing speed

Fig. 14 Example scenario

to measuring orientation

value. a–c Adjusting yaw

angle, d–f roll angle, and g–
i pitch angle
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measurement. Also, while the roll signal estimates the

angle closely, at 250th iteration onwards the drifts also

occurred.

In this paper, some information about the resulting

processing speed will be shown. The experiment is

conducted by measuring processing speed of each

iteration.As a benchmark, the underlyingmethodPTAM

[1] will be run with the same treatment as the proposed

method. According toworkflow of the proposedmethod,

the tracking module runs after a map creation has been

generated by map-making module.

Figure 16 showed the measurement resulted from

the fourth scene. As depicted by the plot, in this

experiment the proposed method also runs on faster

processing time on averagely 57.95 ms (17.25 frame

per second), while PTAM runs on 210.53 ms (4.75

frame per second) for tracking 435 feature points. It is

also noted that there are spikes for a number of times in

the PTAM measurement, due to the method’s attempt

to relocalise feature previously lost. In this experiment

the proposed method managed to have lower process-

ing time throughout the entire iteration, so that it run

on 363 % faster than PTAM.

According to these results, it can be seen that the

proposed method is able to run on shorter processing

time comparing to PTAM. Using inertial sensors with

complementary filter result in direct input to the

system, while a feature-based tracking attempts to

calculate as many features in the scene as possible.

Consequently, the method requires lower computa-

tional power to obtain its camera pose. The proposed

method can sustain its computational costs with

respect to amount of feature points stored in its map.

5 Conclusion

The proposed method.consists of a feature-based map

creation and sensor-based estimation. The base

method, PTAM [7] utilized a fully vision-based

method to track any planar scene in the real environ-

ment. In this research, instead of using feature points

to detect the scene, a collaboration of accelerometer

and gyroscope with a complementary filter replaced

the existing camera pose estimation approach. The

result if quite promising since the speed of tracking

reach triple times (363 %) than the based method. This

markerless tracking has big potential, it can be

implemented not only for Augmented Reality but it

also can be used for tracking moving object or moving

subject in robotic or unmanned vehicle.
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